VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (Mech. Engg.) I-Semester Supplementary Examinations, May/June-2017

Mechanics of Materials

Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A ($10 \times 2=20$ Marks)

1. Define Poisson's ratio and Young's modulus.
2. Determine the minimum diameter of a steel wire, which is used to raise a load of 4000 N , if the stress in the rod is not to exceed $95 \mathrm{MN} / \mathrm{m}^{2}$.
3. Draw Shear force and bending moment diagrams for a cantilever of length L carrying a UDL of w per meter length over its entire length.
4. Define polar modulus and modular ratio.
5. Sketch the shear stress distribution across the square with diagonal vertical and I section.
6. Define Major and Minor principal planes and Major and Minor principal stresses.
7. Write the expression for maximum deflection and maximum slope in a cantilever beam of 'L', flexural rigidity ' Er ', due to a load ' W ', which is acting at a distance of ' z ' from fixed end.
8. Find the torque which a shaft of 100 mm diameter can transmit safely, if the shear stress is not to exceed $100 \mathrm{~N} / \mathrm{mm}^{2}$.
9. Write the assumptions of Lame's theory for determining stresses in thick cylinder.
10. A steel column is of length 8 m and diameter 600 mm with both ends fixed. Determine the crippling load by Euler's formula. Take $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

$$
\text { Part-B }(5 \times 10=50 \mathrm{Marks})
$$

11. a) Derive the relation between the modulus of elasticity and modulus of rigidity.
b) An aluminum rod 22 mm diameter asses through a steel tube of 25 mm internal diameter and 3 mm thick. The rod and tube are fixed at a temperature $180^{\circ} \mathrm{C}$. Find the stress in the rod and tube, when the temperature falls to $60^{\circ} \mathrm{C}$. Take $\mathrm{Es}=200 \mathrm{kN} / \mathrm{mm}^{2}, \mathrm{E}_{\mathrm{A}}=70 \mathrm{kN} / \mathrm{mm}^{2}$, $\alpha s=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $\alpha_{\mathrm{A}}=23 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
12. a) A Simply supported beam $\mathrm{AB}, 8 \mathrm{~m}$ long carries point loads of 3 kN each at a distance of 2 m and 5 m from A and a uniform distributed load of $2 \mathrm{kN} / \mathrm{m}$ between the two point loads. Determine the position and magnitude of maximum bending moment. Draw S.F.D. and B.M.D.
b) A beam simply supported at ends and having cross section as shown in figure 1 is loaded with a UDL., over its entire span. If the beam is 8 m long, find the U.D.L., if the maximum permissible bending stress in tension is limited to $30 \mathrm{MN} / \mathrm{m}^{2}$ and in compression to $45 \mathrm{MN} / \mathrm{m}^{2}$. What are the actual maximum bending stresses set up in the section?

Figare 1
13. a) A T- section beam of flanges $200 \mathrm{~mm} \times 20 \mathrm{~mm}$ and web $250 \mathrm{~mm} \times 25 \mathrm{~mm}$ is subjected, to a shear force of 30 kN . Find the maximum shear stress intensity.
b) A rectangular element in a strained material is subjected to tensile stresses of $100 \mathrm{~N} / \mathrm{mm}^{2}$ and $60 \mathrm{~N} / \mathrm{mm}^{2}$ on mutually perpendicular planes together with a shear stress of $70 \mathrm{~N} / \mathrm{mm}^{2}$. Find the principal stresses, principal planes and maximum shear stress in the block analytically or otherwise.
14. a) Find the end slopes and the maximum deflection of the simply supported beam shown in figure.2. Take $\mathrm{E}=2 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2} \& \mathrm{I}=1.1 \times 10^{9} \mathrm{~mm}^{4}$.

Figure 2
b) Define point of contra flexure and its importance in the analysis of beams, also state the advantages of Macaulay's method in determining the deflections of beams.
15. a) A spherical shell of 175 mm external diameter and 25 mm thick wall subjected to an internal fluid pressure of $100 \mathrm{~N} / \mathrm{mm}^{2}$. Find the distribution of radial and hoop stresses across the wall of the shell.
b) A hollow cylinder cast iron column of 150 mm external diameter and 15 mm thick, 3 m long and is hinged at one end and fixed at other end. Find the ratio of Euler's and Rankine's load. Take $\sigma \mathrm{c}=550 \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha=1 / 1600$.
16. a) List out the assumptions made in theory of pure bending and, derive the equation of [5] $\frac{M}{1}=$ $\frac{f}{y}$ for pure bending.
b) Rails of 15 m length were laid on the track when the temperature was $20^{\circ} \mathrm{C}$. A gap of 1.8 mm was kept between two consecutive rails. At what maximum temperature the rails will remain stress free? If the temperature is raised further by $15^{\circ} \mathrm{C}$, what will be the magnitude and nature of stresses induced in the rails?
17. Write short notes on any two of the following:
a) Mohr's circle in determining stresses
b) Slenderness ratio and its importance to columns
c) Stresses in thin and thick cylinders.

