Hall Ticket	Number	•			
100				- 4 - 4	

Code No.: 21416 S

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (Mech. Engg.) I-Semester Supplementary Examinations, May/June-2017

Mechanics of Materials

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 X 2=20 Marks)

- 1. Define Poisson's ratio and Young's modulus.
- 2. Determine the minimum diameter of a steel wire, which is used to raise a load of 4000 N, if the stress in the rod is not to exceed 95 MN/m².
- 3. Draw Shear force and bending moment diagrams for a cantilever of length L carrying a UDL of w per meter length over its entire length.
- 4. Define polar modulus and modular ratio.
- 5. Sketch the shear stress distribution across the square with diagonal vertical and I section.
- 6. Define Major and Minor principal planes and Major and Minor principal stresses.
- 7. Write the expression for maximum deflection and maximum slope in a cantilever beam of 'L', flexural rigidity 'EI', due to a load 'W', which is acting at a distance of 'z' from fixed end.
- 8. Find the torque which a shaft of 100 mm diameter can transmit safely, if the shear stress is not to exceed 100 N/mm².
- 9. Write the assumptions of Lame's theory for determining stresses in thick cylinder.
- 10. A steel column is of length 8 m and diameter 600 mm with both ends fixed. Determine the crippling load by Euler's formula. Take $E = 2.1 \times 10^5$ N/mm².

Part-B $(5 \times 10 = 50 \text{ Marks})$

11. a) Derive the relation between the modulus of elasticity and modulus of rigidity.

[5]

- b) An aluminum rod 22 mm diameter asses through a steel tube of 25 mm internal diameter [5] and 3 mm thick. The rod and tube are fixed at a temperature 180°C. Find the stress in the rod and tube, when the temperature falls to 60°C. Take Es = 200 kN/mm², E_A =70 kN/mm², $\alpha s = 12 \times 10^{-6}$ /°C and $\alpha_A = 23 \times 10^{-6}$ /°C
- 12. a) A Simply supported beam AB, 8 m long carries point loads of 3 kN each at a distance [5] of 2 m and 5 m from A and a uniform distributed load of 2 kN/m between the two point loads. Determine the position and magnitude of maximum bending moment. Draw S.F.D. and B.M.D.
 - b) A beam simply supported at ends and having cross section as shown in figure 1 is [5] loaded with a UDL., over its entire span. If the beam is 8 m long, find the U.D.L., if the maximum permissible bending stress in tension is limited to 30 MN/m² and in compression to 45 MN/m². What are the actual maximum bending stresses set up in the section?

- 13. a) A T- section beam of flanges 200 mm × 20 mm and web 250 mm × 25 mm is subjected [4] to a shear force of 30 kN. Find the maximum shear stress intensity.
 - b) A rectangular element in a strained material is subjected to tensile stresses of 100 N/mm²
 and 60 N/mm² on mutually perpendicular planes together with a shear stress of 70 N/mm².
 Find the principal stresses, principal planes and maximum shear stress in the block analytically or otherwise.
- 14. a) Find the end slopes and the maximum deflection of the simply supported beam shown in [6] figure 2. Take E = 2 x 10⁴ N/mm² & I = 1.1 x 10⁹ mm⁴.

- b) Define point of contra flexure and its importance in the analysis of beams, also state the [4] advantages of Macaulay's method in determining the deflections of beams.
- 15. a) A spherical shell of 175 mm external diameter and 25 mm thick wall subjected to an internal fluid pressure of 100 N/mm². Find the distribution of radial and hoop stresses across the wall of the shell.
 - b) A hollow cylinder cast iron column of 150 mm external diameter and 15 mm thick, 3 m [4] long and is hinged at one end and fixed at other end. Find the ratio of Euler's and Rankine's load. Take $\sigma c = 550 \text{ N/mm}^2$ and $\alpha = 1/1600$.
- 16. a) List out the assumptions made in theory of pure bending and, derive the equation of [5] $\frac{M}{I} = \frac{f}{f}$ for pure bending.
 - b) Rails of 15 m length were laid on the track when the temperature was 20°C. A gap of [5] 1.8 mm was kept between two consecutive rails. At what maximum temperature the rails will remain stress free? If the temperature is raised further by 15°C, what will be the magnitude and nature of stresses induced in the rails?

17.	Write	short notes on any two of the following:	
	a)	Mohr's circle in determining stresses	[5]
	b)	Slenderness ratio and its importance to columns	[5]
	c)	Stresses in thin and thick cylinders.	[5]